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Abstract 

In this study, the electrical conductivity (EC) of cultivated fields were predicted by pedotransfer 

functions (PTFs) using basic soil properties as variables in stepwise analyses. Before using PTFs, 207 

soil samples were divided into development and validation datasets. This division was done 10 times to 

assess the accuracy and reliability of the PTFs. According to the principal component analysis (PCA), 

the EC values had higher load in PC1 and PC2 with clay, exchangeable Na, Ca, Mg and K contents. 

The EC values had significant positive correlations with pH, clay, exchangeable Ca, Mg, K, Na content, 

and negative correlations with silt and sand content. According to the stepwise analyses, 10 PTFs or 

linear multiple regression models were obtained using development data sets. The accuracy in 

development data sets and reliability in the validation data sets for these PTF models were assessed with 

R2 and RMSE values. The higher mean R2 and the lower mean RMSE values were obtained in the 

development data set when compared to the validation data set. The PTF-7 including clay, exchangeable 

Na, Mg and Ca was suggested to predict soil EC values of cultivated fields. It was determined that clay 

and exchangeable Na, Mg and Ca content were the most effective soil properties on predicting the EC 

values of cultivated fields. 
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INTRODUCTION 

 

Concentration of cation and anion forms 

of soluble minerals in soil is defined as soil 

salinity which is one of the most important 

factors affecting soil fertility and crop 

productivity (Pitman & Läuchli, 2002). 

Electrical conductivity (EC) is an indicator of 

the concentration of dissolved cations or anions 

in the bulk soil suspension (U.S. Salinity 

Laboratory Staff, 1954) and defines the salinity 

level of the soil. Friedman (2005) reported that 

there are three grouped factors that influenced 

the effective EC of the soil. The first one is 

related to the bulk soil and defines the 

aggregation, porosity, water content and 

structure. The second one is related to the 

particle shape and orientation, texture, cation 

exchange capacity, and wettability. The third 

one is environmental factors such as ionic 

strength, cation composition, and temperature. 

In a study about using modern techniques for 

predicting and monitoring soil salinity in 

different regions of the world Gorji et al. (2015) 

indicated that the prediction of soil salinity is 

one of the main concerns to take protective 

measures against soil degradation. Abedi et al. 

(2021) applied six machine learning algorithms 

to model surface soil EC and Na adsorption ratio 

in order to explain the origin and the spatial 

distribution of salinity in the soil samples taken 

from the Darab Plain-Fars Province. Wang et al. 

(2018) studied various regression models for 

estimating soil salt content based on the spectral 

data for monitoring soil salt content in the 

Ebinur Lake Wetland National Nature Reserve, 

Northwest China.  

The pedotransfer functions convert the 

direct data of soil measurement into known and 

unknown soil properties. They are used also for 
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modelling and simulations in soil research, 

hydrology, environmental science, assessment 

of climate change impact, including 

investigating the carbon cycle and the exchange 

of carbon between soils and the atmosphere to 

support carbon farming. In particular, the 

pedotransfer functions can provide the input 

parameters for landscape design, soil quality 

assessment and economic optimisation. The 

variables used in the pedotransfer functions, in 

general, are some soil properties such as clay, 

silt, sand, organic matter content, exchangeable 

cations, total porosity, and bulk density (Gülser, 

2004; Gülser & Candemir, 2008; Candemir & 

Gülser, 2012; Gülser & Candemir, 2014; 

Gülser, 2016). Benke et al. (2020) derived the 

pedotransfer functions using a machine learning 

method to predict soil electrical conductivity for 

different locations of Victoria State in Australia. 

They found that the most frequently occurring 

predictors for EC in the pedotransfer models 

were soil depth, soil reaction, soil texture and 

geomorphological mapping unit. Mualem & 

Friedman (1991) used a conceptual model to 

predict electrical conductivity of saturated and 

unsaturated bulk soils. They reported that 

electrical conductivity of the bulk soil was 

predicted as a function of soil water content and 

soil hydraulic conductivity and the utilization of 

limited number of soil samples was, in general, 

a good estimation for electrical conductivity. 

Lake et al. (2009) developed the pedotransfer 

functions to predict soil physic-chemical and 

hydrological properties in the Southern coastal 

zones of the Caspian Sea. They concluded that 

predicting the soil properties by means of PTFs, 

the input data were consisted of the 

concentration of soluble Na and Cl for EC, and 

the RMSE of the model was 240 dS/m. Andrade 

Foronda & Colinet (2023) studied on machine 

learning algorithms to predict soil exchangeable 

Na percentage (ESP), EC from the soluble salt 

ions (Na+, K+, Ca2+, Mg2+, HCO3
−, Cl−, CO3

2−, 

SO4
2−) as major variables. They concluded that 

the content of soluble Na+ was the most relevant 

variable for all predictions, followed by Ca2+, 

Mg2+, Cl−, and HCO3
−. Mondal et al. (2001) 

developed multiple linear and non-linear 

regression models to predict the surface soil EC 

of the fallow land for both moderately and saline 

soils by using daily rainfall and evaporation as 

independent variables. They concluded that the 

prediction level was not significantly improved 

when a non-linear model was employed in place 

of linear model to predict soil salinity of the 

coastal rice lands of Bangladesh. Shrestha 

(2006) studied the relationship between 

physico-chemical soil properties and electrical 

conductivity (EC) of soil samples in northeast 

Thailand using multiple regression models. The 

researcher found that the observed EC values of 

the surface soils correlated mostly with chloride 

(Cl), sodium (Na), phosphorus (P), and sodium 

adsorption ratio (SAR), and Cl and P found to 

be significant predictors of EC values. 

The objective of the study was to derive 

the pedotransfer functions in order to predict the 

soil EC values using basic soil properties in 

cultivated cropland fields.  

 

MATERIALS AND METHODS 

 

In this study, the relationships between 

soil electrical conductivity (EC) and some soil 

physicochemical properties were determined in 

207 surface soil samples (0-20 cm) taken from 

cropland fields around Bafra and Carsamba 

Plains of Samsun, Türkiye. Some basic soil 

properties were analyzed as follows: particle 

size (clay - C, silt - Si and sand - S) and 

distribution by hydrometer method (Demiralay, 

1993), soil reaction (pH) (w:v, 1:1, soil:water 

suspension) and electrical conductivity (EC25ºC) 

in the same soil suspension was measured by pH 

meter and EC meter, respectively (Rowell, 

1994). Organic matter (OM) content was 

determined using the modified Walkley-Black 

method, and exchangeable cations (Ca, Mg, Na, 

K) by ammonia acetate extraction method 

(Kacar, 1994).   

To predict the EC values of soil samples, 

a linear multiple regression equation between 
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EC and the soil properties was obtained using 

the stepwise analyses with SPSS program. 

Principle component analysis (PCA) was also 

applied as a predictor extraction algorithm for 

reducing the dimensionality of data set (Hegde 

& Vidyapeetham, 2016). 

The accuracy and reliability of the PTFs 

were assessed by cross-validation using the 

development and validation. The random 

splitting of data set was repeated ten times. For 

the accuracy and reliability analyses of the 

PTFs, the root mean square error (RMSE) in 

Eq.1 and the relative error (RE) in Eq.2 of PTFs 

were calculated for each development and 

validation data set (Pachepsky & Rawls, 1999).  

𝑅𝑀𝑆𝐸 =  ⌊
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖 ’)2𝑛

𝑖=1 ⌋
1/2

    (1) 

𝑅𝐸 =  ⌊
1

𝑛
∑

(𝑦𝑖’−𝑦𝑖)

𝑦𝑖

𝑛
𝑖=1 ⌋ . 100%          (2) 

Where, yi and yi’ represent the measured 

and computed EC values, respectively, and n 

represents the number of data. 

 

RESULTS AND DISCUSSION 

 

Descriptive statistics for some physical 

and chemical properties of the soil samples used 

in the study are given in Table 1. The soil 

samples values generally showed a normal 

distribution for most of the soil properties, 

except EC, pH and exchangeable Na content. 

Particle size distribution of the samples was 

classified as 40% fine, 32% moderate and 28% 

coarse textural soil.  According to the EC 

values, 87.9% of soil samples were none saline, 

9.2% were very slightly saline and 2.9% were 

slightly saline. Distribution of soil reaction (pH) 

level of samples was classified as 1.2% very 

strongly acid, 7.6% slightly acid, 21,7% neutral, 

39.6% slightly alkaline and 29,9% moderately 

alkaline. Organic matter contents of samples 

were 12.1% very low, 46.3% low, 33.3% 

moderate and 8.3% high (Soil Survey Staff, 

1993). A lower coefficient of variation (CV) 

value showed the homogeneity of samples and 

the accuracy of experiment (Ogunkunle & 

Eghaghara, 2007). In this study, while 

exchangeable Na and EC values of the samples 

had higher coefficient of variation (CV), soil 

reaction (pH) had the lowest CV among the soil 

properties of cultivated fields. Similarly, Gülser 

et al. (2021) reported that exchangeable Na 

content generally had the highest CV in 

different soil types while the soil pH had the 

lowest CV.  

Table 1. Descriptive statistics of some soil properties (n=207). 

 Minimum Maximum Mean Std. Deviation CV, % Skewness Kurtosis 

EC, µS/cm 110.00 2949.00 659.56 425.56 64.5 2.73 10.59 

C, % 9.99 68.73 35.42 13.89 39.2 0.20 -0.62 

Si, % 3.05 66.37 28.53 8.94 31.3 0.55 0.82 

S, % 4.27 81.71 36.04 16.35 45.4 0.56 -0.48 

OM, % 0.20 4.19 1.97 0.75 38.1 0.29 -0.19 

pH (1:1) 4.85 8.33 7.51 0.60 7.9 -1.76 3.43 

Ca, cmol/kg 2.36 52.53 21.73 9.76 44.9 0.01 -0.48 

Mg, cmol/kg 0.52 21.12 7.05 4.40 62.4 0.69 -0.05 

K, cmol/kg 0.11 1.79 0.58 0.33 56.9 0.98 0.71 

Na, cmol/kg 0.08 5.64 0.62 0.75 120.9 4.03 21.37 

Legend: EC: Electrical Conductivity, C: Clay, Si: Silt, S: Sand, OM: organic matter, CV: Coefficient 

of variation 
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The correlation matrix between EC 

values and some soil properties is given in Table 

2. Silt and sand contents showed negative 

correlations with EC while exchangeable 

cations (Ca, Mg, K, Na), pH and clay content 

had significant correlations with EC values. The 

correlation values between EC and 

exchangeable cations were ordered as follows: 

Ca (0.266**) < K (0.332**) < Mg (0.514**) < 

Na (0.800**). The highest significant 

correlation was found between EC and 

exchangeable Na content (Figure 1). Similarly, 

the high correlation between EC and 

exchangeable Na was indicated in other studies 

- Lake et al. (2009) – 0.4** and Taghizadeh 

Mehrjardi et al. (2008) – 0.80**. Rodriguez 

Perez et al. (2011) reported that apparent soil EC 

had significant correlations with exchangeable 

Na and Mg due to strong association of these 

cations with EC of the soil while the correlations 

between EC and other exchangeable cations (Ca 

and K) were not significant. In another study by 

Shrestha (2006), EC values of soil samples in 

northeast Thailand have significant correlation 

with Na (0.82), Mg (0.55) and Ca (0.27). When 

comparing with the other studies, EC values in 

this study also showed significant positive 

correlations with Na, Mg and Ca in the same 

order. 

Table 2. The correlation matrix of EC values and soil properties. 

 C Si S pH OM Ca Mg K Na 

EC 0.404** -0.010 -0.337** 0.250** 0.124 0.266** 0.514** 0.332** 0.800** 

C  -0.022 -0.837** 0.269** 0.566** 0.514** 0.404** 0.513** 0.190** 

Si   -0.529** 0.170* 0.079 0.001 0.011 -0.085 -0.005 

S    -0.321** -0.524** -0.437** -0.349** -0.389** -0.159* 

pH     0.119 0.585** 0.490** 0.243** 0.181** 

OM      0.413** 0.302** 0.440** -0.060 

Ca       0.543** 0.524** 0.033 

Mg        0.481** 0.402** 

K         0.159* 

Legend: ** Correlation is significant at the 0.01 level, *. Correlation is significant at the 0.05 level. 

Exploratory factor analysis of the nine 

soil properties was conducted using principal 

component analysis (Table 3). EC had higher 

positive loading in the first two components 

(PC1 and PC2). The eigenvalues of the first 4 

PC factors were greater than 1 and explained 

81.65% of the variation of soil properties. The 

PC1 explained 40.82% of the variation, and had 

high positive loadings from C (0.810), Mg 

(0,739), Ca (0.738), K (0.687), and EC (0.629). 

The PC2 explained 57.73% of the variation, and 

had high positive loadings from Na (0.803) and 

EC (0,656). Clay content had significant 

positive correlations with exchangeable cations 

(Ca, Mg, K and Na), EC and pH values of the 

soil samples (Table 2, Figure 1). According to 

PC1 and PC2 results, exchangeable cations and 

clay content were selected as the proper 

variables in the PTFs to predict salinity or EC 

values of the soil samples. 

After repeated random splitting of the 

data set into 10 different subsets for 

development and validation tests, the PTF 

models obtained using the development data set 

by stepwise analysis are given in Table 4. In the 

PTF models, only five soil properties (C, Na, 

Mg, Ca and K) out of 9 were selected to give the 

best prediction of soil EC in each developing 

data set by stepwise analysis. According to the 

selected variables in the PTFs, two groups of 

variables, which were C, Na and Ca in the first 

group and C, Na and Mg in the second group, 

were used in the PTF models more than once. 

The first group variables were used in number 

1, 2, 3, 4 and 10 PTFs while the second group 

variables were used in number 6, 8 and 9 PTFs. 

Exchangeable K content besides Na and Ca 
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were only used in number 5 PTF model and C, 

Na, Mg and Ca together were only used in 

number 7 PTF model (Table 4). 

The determination coefficient (R2) and 

RMSE values were also determined for 

development and validation data sets (Table 4). 

The descriptive statistics for R2, RMSE values 

and relative error (RE) of validation set are also 

given in Table 4.  The accuracy of PTFs was 

assessed by the RMSE of the development data 

set, whereas the reliability of PTFs was assessed 

by the RMSE of the validation data set. The 

RMSE values for development data sets varied 

between 184.84 µS/cm and 240.43 µS/cm with 

the mean of 221.57 µS/cm while the RMSE 

values for the validation data sets varied 

between 180.29 µS/cm and 319.14 µS/cm with 

the mean of 238.43 µS/cm. Fu et al. (2021) 

developed a model to estimate bulk soil EC with 

RMSE values ranging from 8 µS/cm to 399 

µS/cm and relative errors ranging from 0.7% to 

29.8%.  In another study, Benke et al. (2020) 

developed PTFs to predict the soil EC by 

machine learning method and found the 

prediction error for the top ranked model as 686 

µS/cm MSE or 828 µS/cm RMSE. The highest 

determination coefficient (R2) for developing 

and validation data sets were determined in 

number 2 (0.796**) and number 8 (0.867**) 

PTF models, respectively (Table 4). The lowest 

relative error (7.82%) was found in number 4 

PTF model. 

Table 3. Component matrix after rotating by 

maximum variance 

Component Matrix 

 PC1 PC2 PC3 PC4 

EC 0.629 0.656 -0.152 -0.202 

C 0.810 -0.222 0.045 -0.346 

Si 0.155 -0.315 -0.865 0.185 

S -0.772 0.361 0.435 0.192 

OM 0.593 -0.472 0.152 -0.320 

pH 0.569 0.045 -0.047 0.717 

Na 0.415 0.803 -0.251 -0.177 

K 0.687 -0.067 0.373 -0.119 

Ca 0.738 -0.186 0.292 0.381 

Mg 0.739 0.269 0.132 0.246 

Eigenvalue 4.082 1.691 1.294 1.099 

Cumulative var. 

contribution 

rate, % 

40.82 57.73 70.67 81.65 

 
Figure 1. Component plot in rotated space for the soil properties 

There were significant negative 

correlations between R2 (-0.910**) and between 

RMSE (- 0.984**) values for the EC estimates 

in development and validation data sets. 

However, Pachepsky et al. (1999) reported that 

there was not dependence between RMSE 

values for the estimate soil moisture constant in 

development and validation data sets and R2 

values had positive dependence in development 

and validation data sets. The negative 



 
 

 

152 

Agricultural University – Plovdiv AGRICULTURAL SCIENCES  Volume 16   Issue 43   2024 

correlations for R2 and RMSE between 

development and validation data sets can be 

explained with non-normal distribution of EC 

values in the soil samples. The coefficient of 

variation values of R2 (6.29%) and RMSE 

(9.29%) determined in the development data set 

were lower than that R2 (21.13%) and RMSE 

(21,44%) determined in the validation data set.  

Table 4. The PTF models developed to predict EC values in cultivated soils 

No PTF Models 
R2 

develop. 

R2 

valid. 

RMSE 

develop. 

µS/cm 

RMSE 

valid. 

µS/cm 

RE 

valid. 

% 

1 EC=68,86+430,59 Na+5,48 C+5,69 Ca   0.758 0.660 184.84 319.14 14.79 

2 EC=96,66+436,46 Na+4,76 C+5,83 Ca   0.796 0.444 195.60 302.33 22.64 

3 EC=63,80+426,52 Na+4,73 C+7,72 Ca   0.665 0.847 236.89 190.85 15.35 

4 EC=114,16+412,75 Na+4,47 C+5,19 Ca   0.757 0.695 198.20 302.94 7.82 

5 EC=109,18+438,47 Na+9,18 Ca+137,66 K   0.686 0.759 235.81 220.46 19.01 

6 EC=61,66+400,92 Na+6,70 C+17,29 Mg   0.765 0.459 224.88 233.76 13.97 

7 EC=50,00+410,51 Na+4,78 C+3,97 Ca+14,78 Mg   0.700 0.801 236.36 202.73 8.82 

8 EC=125,97+410,48 Na+5,47 C+13,70 Mg   0.661 0.867 240.43 180.29 23.40 

9 EC=65,30+384,75 Na+5,91 C+22,03 Mg   0.737 0.648 227.29 231.69 16.75 

10 EC=64,41+442,48 Na+4,21 C+8,25 Ca   0.729 0.686 235.42 199.13 13.84 

 Minimum 0.665 0.444 184.84 180.29 7.82 

 Maximum 0.796 0.867 240.43 319.14 23.40 

 Mean 0.725 0.686 221.57 238.43 15.64 

 Standard Deviation 0.046 0.145 20.59 51.14 5.11 

 Coefficient of Variation, % 6.29 21.13 9.29 21.44 32.70 
 

In this study, the PTF model 7 including 

C, Na, Mg and Ca variables can be suggested to 

predict the EC values due to having lower 

RMSE and higher R2 values for both 

development and validation data sets and a 

lower relative error (8.82%) compare with the 

other PTFs (Figure 2). Also, the PTF model 8, 

having the highest R2 and the lowest RMSE 

values for validation data set, can be suggested 

to predict the soil EC values of cultivated fields 

(Figure 3). 

 
Figure 2. Relationship between EC values of 

validation data set and EC values estimated by 

PTF model 7. 

 
Figure 3. Relationship between EC values of 

validation data set and EC values estimated by 

PTF model 8. 
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CONCLUSION 

 

Soil salinity is one of the most important 

soil parameters and helps for explaining many 

soil physical, chemical and biological 

processes. Soil salinity level, generally, is 

calculated using the EC value of soil solution. In 

this study, the EC values were predicted by 

PTFs based on basic soil properties of 207 soil 

samples of cultivated fields. Before developing 

PTFs to predict soil EC values, soil samples 

were divided for developing (3/4) and validation 

data (1/4) sets 10 times to explain accuracy and 

reliability of PTFs, respectively. According to 

the PC analyses result, EC values had higher 

load in PC1 and PC2 with clay, exchangeable 

Na, Ca, Mg and K contents. EC values had also 

significant positive correlations with these soil 

properties. According to the stepwise analyses, 

ten PTFs or linear multiple regression models 

were produced and accuracy and reliability of 

these models were assessed with determination 

coefficients (R2) and RMSE values. The higher 

average R2 and lower average RMSE were 

determined in developing data set compared to 

validation data set. The PTF-8 including clay, 

exchangeable Na, Mg and Ca variables and 

having almost higher R2 and lower RMSE and 

RE can be suggested to predict soil EC values of 

cultivated fields.  
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