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Abstract 

This paper explores whether the impacts of long-term investments on efficiency vary 

significantly across different regions and sectors of agricultural production.  By delving into these 

complexities, this study seeks to determine if these factors should be integral considerations in the 

formulation of policies and strategies aimed at improving the efficiency and resilience of the European 

agricultural system. 

To address this, the study employs mathematical and statistical analyses of data from the Farm 

Accountancy Data Network (FADN) covering 2014-2020.  

The findings reveal that the diverse behaviors of agricultural systems across various regions and 

sectors present unique challenges in efficiency analysis. The results indicate that (i) incorporating 

regional and sector-specific variability provides a more comprehensive and nuanced understanding of 

the factors influencing the agricultural cost efficiency of EU farm groups; (ii) emphasizing the systemic 

aspects of agricultural investments and adopting a system thinking approach in evaluations ensures more 

accurate and meaningful assessments of investments, interventions, and their impacts. 
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INTRODUCTION 

 

When we talk about a system, Schuster 

(2021) provides a comprehensive understanding 

of this concept in “The Art of Thinking in 

Systems.” The system is described as a unified 

set of interconnected elements that collectively 

exhibit characteristic behavior patterns over 

time. Systems are viewed as the cause of their 

own behavior, demonstrating consistency even 

when influenced by external forces. This 

inherent characteristic highlights the unique 

identity and response of the system to certain 

stimuli. 

Hummelbrunner (2011) views systems 

theory as a specific approach to conceptualizing 

the world, emphasizing the relationships that 

connect elements into a whole. This perspective 

suggests that almost anything can be considered 

a system, ranging from natural ecosystems to 

social organizations.  

Systems typically consist of subsystems, 

which are part of a larger system known as a 

suprasystem. The hierarchy between these 

systems should not be seen as strictly linear but 

rather as a network with various connections, 

reflecting the complexity and interdependency 

of the elements involved. The concept of 

systems thinking encourages us to see 

everything as interconnected, instead of viewing 

units as isolated components. 

Systems are not only physical entities in 

the real world, but also mental constructs 

created by people to help us understand the 

world around us. These mental constructs can be 

highly subjective, and any representation of a 

system is inevitably a subjective simplification 

of relationships (systemic relationships) and 

may not fully capture the complexity of the real 

world.  

http://agrarninauki.au-plovdiv.bg/uncategorized/6-43/
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In this context, agricultural systems 

encompass a broad framework of various 

interconnected components and processes. 

These systems can be represented in analyses as 

complex interactions between biological, 

ecological, social, economic, and other factors 

at different levels-from individual farms to 

entire regions and sectors. The 

multidisciplinary, multilevel, and multisectoral 

perspectives present the agricultural system as 

composed of various interconnected 

subsystems, collectively contributing to a more 

holistic view of agricultural systems. 

Many factors driving the agricultural 

systems have been identified by Hendrickson et 

al. (2008), Walters et al. (2016), FAO (2021), 

and many others. Some researchers go beyond 

merely identifying the elements (factors) and 

describe the interactions between them, forming 

system characteristics such as feedback loops, 

trade-offs, synergies, and scale effects, 

highlighting the complex challenges facing 

modern agriculture (Lee-Gammage, 2017).  

Identifying system relationships, 

characteristics, and dynamics, when 

comprehensive data is available allows for a 

more thorough assessment of agricultural 

activities, cost efficiency, and associated 

systemic risks. System relationships are 

fundamental to the emergence of systemic risks. 

However, system relationships are a more 

comprehensive concept that is not limited to 

causing solely systemic risks. Although the term 

“systemic risks” is widely used, emphasizing 

the negative consequences of system 

relationships, the term “complex systemic 

uncertainties” more adequately describes the 

diversity of different interactions between 

elements of complex systems. Therefore, 

understanding system relationships is crucial for 

addressing systemic risks and uncertainties in 

agriculture.  

Systems thinking allows for a more 

nuanced understanding of the agricultural 

landscape by considering the various factors and 

their interdependencies, thus, organizations like 

the American Evaluation Association (AEA), 

the International Development Evaluation 

Association (IDEAS), the European Evaluation 

Society (EES), and the International 

Organization for Cooperation in Evaluation 

(IOCE) already promote the use of systems 

approaches by sharing best practices, 

developing professional standards, and 

fostering innovation in evaluation 

methodologies. 

The endorsement of systems approaches 

underlines the value of methodologies in 

understanding complex, interlinked 

phenomena. Such approaches are critical in 

agriculture, where investments in fixed assets 

like machinery, equipment, and infrastructure 

are pivotal for boosting productivity and 

efficiency. However, the impact of these 

investments is not uniform.  

These investments are heavily 

influenced by numerous factors that vary from 

region to region and even from sector to sector, 

necessitating a nuanced evaluation of their 

effectiveness within diverse contexts. 

Socio-economic conditions play a 

critical role in determining the effectiveness and 

efficiency of investments. For example, 

developed economies may have easier access to 

modern technologies and financial resources, 

significantly affecting their opportunities for 

agricultural modernization. Meanwhile, 

developing regions face challenges such as 

limited access to capital, technology, and 

education, which restrict their ability to utilize 

the potential of investments in fixed assets. 

Climate and ecological conditions also 

play a critical role, as they dictate the types of 

crops and production methods that can be 

productive and efficient in each region. 

Economic and social characteristics, including 

land ownership distribution and the social 

structure of the workforce, also have a 

significant impact on how investments in 

agriculture are utilized. 
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The specific combination and complex 

interrelationships of these factors manifest 

through regional differences and sectoral 

characteristics.  
Different regions have different climatic 

and ecological conditions, different cultural and 

historical contexts, as well as different 

economic and social characteristics. Therefore, 

the specific combination of these factors will 

impact differently in each area, taking into 

account local conditions and context. 

Each agricultural sector also has its 

specific characteristics that can influence the 

way various factors interact. As a result, each 

agricultural investment activity may have 

unique challenges and opportunities that vary 

depending on the specific conditions in the 

sector. 

The impact of investments on efficiency 

varies based on contextual factors such as 

regional differences and sector-specific 

characteristics. This variation presents 

significant challenges in assessing investments 

and implementing uniform policies across 

different investment intervention areas. 

Therefore, achieving an optimal effect from 

investments in fixed assets in agriculture 

requires understanding the specific contextual 

factors. This necessitates a differentiated 

approach and flexibility in policies and 

programs to support investments, addressing the 

unique challenges and opportunities that arise in 

different regions and sectors of agriculture. 

 

Purpose of the study 

The primary objective of this research is 

to investigate whether differences in regional 

conditions and sector-specific characteristics 

influence the effectiveness of agricultural 

investments on efficiency.  

Proving that the variation in 

investments’ impacts on efficiency depends 

heavily on regional differences and sectoral 

characteristics of agriculture production will 

provide valuable insights that could guide 

strategic decision-making, thereby fostering 

policies that are better aligned with the diverse 

conditions across the European Union's 

agricultural landscape. By confirming the 

presence or absence of these nuanced impacts, 

the research aims to contribute insights for 

enhancing the resilience of the European 

agricultural system. 

 

Research question 

In order to investigate the influence of 

distinct regional disparities and specific sectoral 

characteristics on the effectiveness of 

investments in enhancing the efficiency of 

agricultural production the study aims to answer 

the following research question: 

Q: Does reflecting regional differences 

and sectoral characteristics improve the model's 

ability to capture the complex and intricate 

relationships between annual distributed 

investment costs in fixed assets (depreciation) 

and relative cost efficiency? 

Specifically, the study seeks to answer 

whether accounting for regional differences and 

sectoral characteristics enhances the model's 

ability to capture the complex relationships 

between annual investment costs in long-term 

fixed assets (depreciation) and relative cost 

efficiency. 

 

MATERIALS AND METHODS 

 

For the purpose of the research 

mathematical and many statistical analyses of 

data on investments in fixed assets (FA) and the 

comparative cost efficiency of farm groups in 

the European Union for the period 2014-2020 

are conducted. The source of the data is the 

Farm Accountancy Data Network (FADN), 

which is a comprehensive database managed by 

the Directorate-General for Agriculture and 

Rural Development of the European 

Commission. FADN collects a diverse range of 

financial and economic data from agricultural 

farms throughout the member states of the 

European Union. This database is designed to 

provide a representative sample of farms across 
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Europe and is renowned for its reliability and 

comprehensive coverage in gathering crucial 

information related to farm incomes and 

operations. 

Various quantitative methods are used to 

present comparative cost efficiency and its 

relationship with investments in long-term fixed 

assets (FA) in the following order: 

1. Deriving the comparative cost efficiency 

using a mathematical programming model 

known as Data Envelopment Analysis (DEA), 

2. Normalizing the comparative cost 

efficiency through nominalization, 

3. Transforming the annual distributed 

investments in long-term fixed assets 

(depreciation cost) through logarithmic 

transformation, 

4. Analyzing relationships between 

comparative cost efficiency and depreciation 

cost using maximum likelihood estimation 

parameters in binary logistic regression, 

5. Evaluating model performance through: 

5.1 Overall assessment tests based on 

likelihood ratio tests, 

5.2 Pseudo R-squares calculated using 

methods like McFadden, Cox & Snell, and 

Nagelkerke, 

5.3 Information-theoretic criteria based on 

methods from information theory, 

5.4 Classification and predictive methods 

such as AUC and related ROC. 

 

Deriving the comparative cost 

efficiency using a mathematical 

programming model known as Data 

Envelopment Analysis (DEA) 

Seven technological boundaries are 

established using a mathematical model 

(Equation 1) known as Data Envelopment 

Analysis (DEA). Optimization tasks were 

tackled using the software application 

OpenSolver 2.9.3, following the methodologies 

outlined by Mason (2012). The method applied, 

known as basic DEA, evaluates Decision 

Making Units (DMUs) based on their ability to 

achieve the optimal ratio between inputs and 

outputs. DMUs that achieve the best efficiency 

score of 1 are considered fully efficient and are 

positioned on the ‘efficiency frontier’. DMUs 

that fall short of this frontier receive scores 

below 1, indicating less efficiency. The 

difference between 1 and the efficiency score of 

each DMU quantifies its potential for 

improvement. 

Equation 1 

𝑚𝑖𝑛 𝜃 
st. 

∑ 𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑥𝑖𝑗0
     𝑖 = 1,2, … . . , 𝑚 

∑ 𝜆𝑗𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑗0
     𝑟 = 1,2, … . . , 𝑠 

∑ 𝜆𝑗

𝑛

𝑗=1

= 1 

𝜆𝑗 ≥ 0                      𝑗 = 1,2, … . . , 𝑛 

Since the groups of farms examined in 

this study may not operate at their optimal scale, 

the model used in this research assumes 

variable returns to scale (VRS), as proposed in 

the model by Banker, Charnes, and Cooper 

(1984). 

The orientation applied in this study for 

calculating comparative efficiency is input-

oriented for two main reasons: (1) because the 

resources used (inputs) are controlled variables, 

while outputs are uncontrollable variables, and 

(2) because this orientation aligns with the 

imperative of sustainability, aiming to reduce 

excessive resource use. 

There is no specific predefined objective 

or imposed constraint, which is why a radial 

approach is used to derive the index of 

comparative cost efficiency. 

The variables used to measure 

comparative cost efficiency, reflecting the cost 

structure of DMUs, are based on representative 

data from the Farm Accountancy Data Network 

(FADN) at the economic size level of farms 

across all EU member states during the period 
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2014–2020. All variables are expressed in 

financial measures (€). 

The model uses three input variables (m 

= 3) representing the expenditure structure of 

farms: 

SE281 Total specific costs 

SE336 Total farming overheads 

SE365 Total external factors 

As an output (s = 1) for the model, a measure 

of production is used: 

SE131 Total output 

The number of DMUs varies over the years: 

2014 (n=1296), 2015 (n=1271), 2016 

(n=1313), 2017 (n=1336), 2018 (n=1325), 

2019 (n=1315), and 2020 (n=1327). 

These variables are detailed in the 

“Definitions of Variables Used in Standard 

Results of FADN” (AGRI DG, 2011). 

Normalizing the comparative cost 

efficiency through nominalization 

In order to satisfy the requirements for 

the target value of binary logistic regression the 

numerical value of comparative cost efficiency 

(DEA index) is transformed into a binary 

variable with two categories: 

"0-50%" – DMUs with less than or equal 

to 50% comparative cost efficiency. 

"50-100%" – DMUs with more than 

50% comparative cost efficiency. 

Transforming the annual distributed 

investments in long-term fixed assets 

(depreciation cost) through logarithmic 

transformation 

One of the most widely used variables in 

Data Envelopment Analysis (DEA) in various 

research publications in the field of agriculture 

is depreciation. Depreciation SE360 from the 

publicly available FADN database denotes the 

decrease in the value of capital assets over the 

accounting year. Due to its non-normal 

distribution as confirmed by the Shapiro-Wilk 

test (p < .001) it is transformed logarithmically 

before using it as a factor variable in the logistic 

regression. 

Analyzing relationships using 

maximum likelihood estimation parameters 

in binary logistic regression 

In this research, binary logistic 

regression is employed to present the 

relationship between depreciation cost (a proxy 

for investments in long-term capital assets) and 

the comparative efficiency of costs. Assessing 

the investment effects is presented by two 

contrasting methodologies: the reductionist and 

systemic approaches. 

The reductionist approach simplifies 

evaluation by focusing on isolated factors and 

measuring their individual impacts on 

outcomes. It breaks down complex scenarios 

into discrete elements, analyzing them 

independently to identify specific contributions. 

Conversely, the systemic approach 

adopts a holistic perspective, acknowledging 

that investment outcomes are shaped by a web 

of interconnected factors. Understanding the 

impact of investments requires considering 

these multifaceted influences across diverse 

regions and sectors. The inclusion of the 

categorical variables (sector and member state) 

in interaction effects allows for modeling how 

the effect of the predictor variable (logarithm of 

depreciation expenses) on the logarithm of odds 

changes depending on the value of the 

dichotomous categorical variable (0;1). 

Within the framework of this research 

the two models, A and B, (Equation 2 and 

Equation 3) illustrate these contrasting 

approaches. The reductionist model isolates and 

examines specific variables to quantify their 

direct effects, aiming for clarity and simplicity 

in analysis. In contrast, the systemic model 

portrays agricultural systems as intricate 

networks of interconnected subsystems. It 

captures the dynamic and nonlinear interactions 

within agriculture, emphasizing the 

interdependence of factors and context across 

diverse regions and sectors. 

Model A reflecting reductionist 

approach: 

Equation 2 
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𝐿𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1 ⋅ 𝐿𝑜𝑔_𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 
Model B reflecting system approach: 

Equation 3 

𝐿𝑜𝑔𝑖𝑡(𝑝) = 𝛽0 + 𝛽1 ⋅ 𝐿𝑜𝑔_𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 

+β2 ⋅Sector 

+β3 ⋅EU_Member 

+β4 ⋅ (Log_Depreciation×Sector) 

+β5 ⋅ (Log_Depreciation×EU_Member) 

𝐿𝑜𝑔𝑖𝑡(𝑝) is the logit of the probability p. 

β0,β1,β2,β3,β4,β5 are parameters of the 

model estimated during analysis 

Log_Depreciation is the logarithm of 

depreciation 

Sector is the categorical variable 

representing different sectors 

EU_Member is the categorical variable 

representing different EU member states 

Log_Depreciation×Sector and 

Log_Depreciation×EU_Member are 

interactions between the logarithm of 

depreciation and the categorical variables 

By employing both models, the research 

seeks to provide a comprehensive 

understanding of how different methodological 

approaches can reveal insights into the systemic 

aspects of agricultural investments. 

 

Evaluating model performance 

For evaluating the model performance 

the research goes through (i) Overall assessment 

tests based on likelihood ratio tests, (ii) Pseudo 

R-squares calculated using methods like 

McFadden, Cox & Snell, and Nagelkerke, (iii) 

Information-theoretic criteria based on methods 

from information theory, and (iv) Classification 

and predictive methods such as AUC and 

related ROC. 

In the Overall Model Test, the 

considered model (A or B), referred to as the full 

model, which includes one or more factor 

variables, is compared with the null model 

(M0), which has no factor variables. It measures 

the improvement in model fit when transitioning 

from the null model to the considered model. 

This statistic is based on the χ² statistic. The 

larger the value of the χ² statistic, the better the 

proposed model fits the dataset. 

Pseudo R-squared in logistic 

regression represents a measure of improvement 

in model fit compared to the null model (with no 

predictor variables). It assesses the model's 

goodness-of-fit for predicting probabilities, 

which is different from explaining variance in a 

continuous outcome as does R-squared in linear 

regression. A higher value of pseudo R-squared 

indicates a better fit of the model in terms of 

predicting probabilities.  Measures used in this 

research are the pseudo R-squares of 

McFadden, Cox-Snell, and Nagelkerke (see 

Cox and Snell, 1989; McFadden, 1974; 

Nagelkerke, 1991). The higher the value, the 

better the proposed model fits the dataset. 

AUC (Area Under the Curve) is 

another crucial metric for evaluating the 

performance of binary classifiers. AUC 

quantifies the ability of a binary classifier to 

distinguish between classes. It represents the 

area under the Receiver Operating 

Characteristic (ROC) curve, which plots the 

true positive rate (sensitivity) against the false 

positive rate (1-specificity) for different 

threshold values. 

AUC values range from 0 to 1. AUC = 

0.5 indicates that the classifier performs no 

better than random guessing (no discrimination 

ability), where the ROC curve is along the 

diagonal line (true positive rate = false positive 

rate). AUC = 1 represents a perfect classifier 

that achieves perfect discrimination between the 

classes without any misclassifications. 

AUC values between 0.5 and 1 indicate 

varying levels of classifier performance. The 

closer the AUC is to 1, the better the classifier's 

ability to distinguish between the positive and 

negative classes. Higher AUC values indicate 

better overall performance of the classifier. 

AUC is particularly useful because it 

provides a single scalar value that summarizes 

the classifier's performance across all possible 

threshold values. It is robust to class imbalance 

and is widely used in evaluating and comparing 

different classifiers. 
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In practical terms, when comparing 

classifiers, higher AUC values generally 

suggest that the classifier has better predictive 

power and can more effectively distinguish 

between the classes it is trained to identify. 

When comparing models using 

Information-theoretic criteria, depending on 

the objectives, we can evaluate the models with 

absolute and relative measures. The Akaike 

Information Criterion (AIC) formulated by 

Hirotugu Akaike, a Japanese statistician, in his 

seminal paper “A New Look at the Statistical 

Model Identification” (Akaike, 1974) is an 

absolute measure, while so-called evidence 

ratio (ER) is a relative measure to make direct 

comparisons between normalized likelihoods 

using Akaike weights. They allow us to 

compare the relative strength of evidence 

(Akaike weights) in favor of one model against 

another. The ratio indicates which of the two 

models is better, in the context of Kullback-

Leibler (K-L) information - a measure of good 

approximation. 

Values of the evidence ratio higher than 

one indicate a stronger evidence in support of 

the model in the nominator compared to the 

model in the denominator. Conversely, lower 

values than one, indicate that the model in the 

nominator is less supported compared to the 

model in the denominator. A ratio close to 1 

highlights that there is no strong evidence 

favoring one model over the other. 

 

RESULTS AND DISCUSSION 

 

In this section, the outcomes of the 

statistical analysis are presented comparing the 

performance of the two models, MA and MB, 

across a seven-year period from 2014 to 2020.  

The following results demonstrate the 

robustness of Model MB in capturing the 

nuanced dynamics of agricultural efficiencies, 

thus providing crucial insights for the impact of 

regional and sector-specific characteristics on 

the effectiveness of agricultural investments on 

efficiency. 

Table 1. Summarizes the results of the 

performance metrics: 

Table 1. Performance metrics 

Performance 

metrics 

  Year 

Model 2014 2015 2016 2017 2018 2019 2020 

LRT - 

Overall 

Model Test 

χ² 
MA 0.1 9.96 0.12 2.07 1.5 21.6 7.96 

MB 805.27 840.85 868.88 896.48 674.39 812.7 721.4 

Df 
MA 1 1 1 1 1 1 1 

MB 69 69 69 69 69 69 69 

P 
MA 0.755 0.002 0.725 0.150 0.221 < .001 0.005 

MB < .001 < .001 < .001 < .001 < .001 < .001 < .001 

Pseudo Rs – 

squared 

R²McF 
MA 5.46e-5 0.00566 6.81e-5 0.00112 9.60e-4 0.0120 0.00433 

MB 0.450 0.47787 0.478 0.48410 0.432 0.4498 0.39275 

R²CS 
MA 7.54e-5 0.00780 9.43e-5 0.00155 0.00113 0.0163 0.00598 

MB 0.463 0.48396 0.484 0.48881 0.39889 0.4610 0.41937 

R²N 
MA 1.01e-4 0.0104 1.26e-4 0.00207 0.00163 0.0218 0.00798 

MB 0.618 0.6457 0.646 0.65179 0.57653 0.6172 0.55955 

Information-

theoretic 

criteria 

AIC 
MA 1794 1754 1823 1854 1562 1789 1833 

MB 1125 1059 1090 1095 1025 1134 1255 

ER aic 
MA 1 1 1 1 1 1 1 

MB 1.87E+145 8.27E+150 1.48E+159 6.53E+164 4.06E+116 1.70E+142 3.24E+125 

Classificatio

n metrics 
AUC 

MA 0.498 0.569 0.519 0.533 0.495 0.597 0.566 

MB 0.91 0.92 0.92 0.921 0.909 0.911 0.89 

Source: Own research based on data from FADN 
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According to the Overall Model Test, 

our analysis underscores the superiority of 

Model MB as the more reliable and consistently 

fitting model over the seven-year period. This 

conclusion is drawn from its ability to 

consistently achieve high chi-square values 

(from 674,39 to 896,48) and significant p-

values, thereby demonstrating its robustness and 

efficacy in model fitting. 

According to the Pseudo R-squared 

metrics for two models (MA and MB) across 

different years (2014 to 2020), Model MB 

consistently outperforms Model MA. Model 

MA shows very low values in all three pseudo 

R-squared measures, indicating a poor fit to the 

data. In contrast, Model MB demonstrates high 

pseudo R-squared values across all metrics, 

suggesting a much better fit. Model MB is 

evidently the more reliable and better-fitting 

model over the years, as indicated by its higher 

pseudo R-squared values. This suggests that 

Model MB is much more effective in capturing 

the underlying patterns in the data compared to 

Model MA. 

Across all the years, Model MB 

consistently has lower AIC values, ranging from 

1025 in the 2018 year to 1255 in the 2020 year, 

compared to Model MA, indicating that Model 

MB provides a better fit for the data each year. 

The Evidence Ratios also strongly favor Model 

MB over Model MA, with values indicating an 

extremely high likelihood that Model MB is the 

better model compared to Model MA. The 

consistent pattern observed in both the AIC 

values and the Evidence Ratios clearly indicates 

that Model MB is superior to Model MA across 

all the years from 2014 to 2020. 

The AUC values for Model MA range 

from 0.495 to 0.597 across the years. These 

values are close to 0.5, indicating that Model 

MA performs only slightly better than random 

guessing and has poor discriminatory power 

between the classes. 

The AUC values for Model MB are 

consistently high, ranging from 0.89 to 0.921. 

These values are close to 1, indicating that 

Model MB has excellent discriminatory power 

and performs significantly better at 

distinguishing between the two classes. 

Therefore, Model MB demonstrates 

superior performance in terms of classification 

accuracy compared to Model MA across all 

years from 2014 to 2020. The AUC values for 

Model MB are consistently high, indicating that 

it reliably and effectively distinguishes between 

the two classes. In contrast, Model MA's AUC 

values suggest that it struggles to differentiate 

between the classes, performing only 

marginally better than a random classifier, as is 

evident from the ROC curves from Figure 1 to 

Figure 7. 

 
Figure 1. ROC and AUC 2014 

Source: Author's elaboration on data from FADN 
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Figure 2. ROC and AUC 2015 

Source: Author's elaboration on data from FADN 

 
Figure 3. ROC and AUC 2016 

Source: Author's elaboration on data from FADN 

 
Figure 4. ROC and AUC 2017 

Source: Author's elaboration on data from FADN 
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Figure 5. ROC and AUC 2018 

Source: Author's elaboration on data from FADN 

 
Figure 6. ROC and AUC 2019 

Source: Author's elaboration on data from FADN 

 
Figure 7. ROC and AUC 2020 

Source: Author's elaboration on data from FADN 
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Overall, the AUC analysis and ROC 

curves reinforce the earlier findings from the 

Overall Model Test, Pseudo R-squared metrics, 

AIC, and Evidence Ratios, highlighting Model 

MB's robustness and effectiveness in 

classification tasks. Model MB is evidently the 

more reliable and accurate model for predicting 

outcomes in this context, indicating that Model 

MB is well-suited for analyzing cost efficiency 

with consideration of regional and sector-

specific factors. This makes Model MB a 

valuable tool for policymakers and business 

analysts seeking to understand and improve EU 

agricultural cost efficiency in different regions 

and sectors. 

The trends in the models’ performance 

are observed across all considered years. The 

established patterns are not random but indicate 

the presence of systemic relationships. 

Knowledge of these systemic relationships and 

persistent patterns aids in strategic planning and 

informed decision-making. Incorporating 

moderator effects into statistical models like 

Model MB provides a rigorous way to confirm 

and delineate systemic relationships in 

agricultural investments. This approach is 

crucial for understanding how regional 

characteristics and sector-specific factors 

influence the effectiveness of investments in 

enhancing agricultural efficiency. 

Delving deeper into the systemic aspects 

of agricultural investments, it is evident that the 

consistent performance trends of Model MB 

over a seven-year period underscore the 

importance of incorporating a systemic 

perspective into the analysis of agricultural 

efficiency. Unlike isolated evaluations, a 

systemic approach considers the 

interconnectedness and interdependencies of 

various factors within the agriculture. 

Agriculture is inherently influenced by a 

multitude of interconnected factors that include 

ecological conditions, technological 

advancements, market dynamics, policy 

frameworks, socio-economic conditions, and 

others, which Hendrickson et al. (2008), 

Walters et al. (2016), FAO (2021) aim to 

identify. These factors, however, do not exist in 

a vacuum, rather, they interact in complex ways 

forming regional and sectoral influences that 

significantly impact investment outcomes. 
 

CONCLUSION 
 

This research underlines the intricate 

dynamics between regional and sector-specific 

characteristics and their impact on the efficiency 

of agricultural investments within the European 

Union. By embracing a systemic approach that 

incorporates variability across regions and 

sectors, this study demonstrates a more precise 

understanding of investments’ impacts on 

comparative cost efficiency.  

The robustness of these findings is 

underscored by rigorous statistical analyses, 

including Data Envelopment Analysis (DEA) 

and logistic regression, which have provided a 

comprehensive view of the efficiency dynamics 

within the agricultural sectors across the 

European Union. The high chi-square values 

and significant p-values observed in Model MB 

across multiple years indicate superiority of 

systemic approaches over reductionist ones. 

By incorporating advanced metrics such 

as Pseudo R-squared values and the Area Under 

the Curve (AUC) analysis, this study has not 

only highlighted the disparities in agricultural 

efficiency but also quantified the extent to 

which regional and sector-specific factors 

influence these efficiencies. The consistent high 

AUC values close to 1 for Model MB illustrate 

its superior predictive power and discrimination 

ability, validating the impact of regional and 

sector-specific variations on comparative cost 

efficiency in agriculture. 

These statistical insights have profound 

implications for policy-making. The analysis 

shows that adopting uniform agricultural 

policies may overlook critical regional and 

sector-specific nuances, potentially leading to 

suboptimal outcomes. Therefore, tailored 

strategies that account for the distinct 

characteristics of each region and sector are 
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essential for enhancing agricultural efficiency. 

Such policies should support flexibility in 

investment, fostering adaptive strategies that 

align with specific regional and sectoral needs. 

Furthermore, the findings advocate for 

considering system aspects of agricultural 

investments and incorporating systems thinking 

into evaluation. Confirmed by the research 

outcomes, system approach in evaluation help 

ensure more accurate and meaningful 

assessments of investments, interventions, and 

their impacts. Ultimately, this study calls for a 

paradigm shift towards a more integrative and 

holistic approach in agricultural policy design 

and implementation. 
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