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Abstract 

Silicon (Si) is the second most abundant element after oxygen in soil. Nevertheless, it was not 

considered essential for plant growth and development. In the last decades, many researchers have 

reported that silicon can mitigate to some extent the adverse effects of variable biotic and abiotic stresses 

caused by salinity, chilling, heating, nutritional imbalance, heavy metals, diseases, herbivores, and many 

others. There are different hypotheses regarding the mechanisms of the silicon mode of action. Some of 

them propose that the silicon treatment is probably related to the structural modification of the plant 

cells and tissues. Others speculate that silicon could be involved in plant metabolism. The interaction 

between the two mechanisms is also a very reliable hypothesis. Most of the studies focused on the 

influence of silicon on alleviating the negative effects of abiotic stress factors. The reports about the 

effect of silicon under biotic stress are not so abundant. Today, there is no doubt about the positive effect 

of silicon application in alleviating stress and reducing the pest and disease incidence and severity. 

However, the mechanisms of the silicon-induced plant responses are not yet completely clear. This 

motivated the current study to analyze the data presented about the silicon-induced alleviation of biotic 

stress.  
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INTRODUCTION 

 

Silicon (Si) is the second most abundant 

element after oxygen in the Earth's crust (Ma 

and Yamaji, 2006), yet it was not considered 

essential for plants (Arnon & Stout, 1939). In 

2015, according to the International Plant 

Nutrition Institute (IPNI), Si was categorized as 

a "beneficial substance". The application of 

silicon-containing products can have several 

agronomic benefits, including improved plant 

growth and increased yield (Epstein, 1994, 

Richmond & Sussman, 2003) and protection 

from pests and diseases (Massey et al., 2006, 

Sun et al., 2022). Silicon is absorbed by the 

plant roots as soluble silicic acid Si(OH)4 and in 

its ionized form – Si(OH)3O
-, which 

predominates at high pH of the soil solution 

(Currie & Perry, 2007). It is deposited in various 

plant organs and tissues as solid amorphous 

silica (SiO2.nH2O), where it interacts with 

polyphenols and pectin and enhances cell wall 

strength and rigidity (Jinger et al., 2017). These 

two compounds are found in soil at 

concentrations of 0.1 to 0.6 mM and are readily 

absorbed by plants (Epstein, 1994). Silicon 

accumulation varies between species, ranging 

from 0 to about 10% of the plant dry shoot 

weight, and its deposition is not the same in the 

different parts of the plant (Shwethakumari & 

Prakashand, 2018). The most significant 

amounts of Si are accumulated in the plants of 

the Poaceae, Equisetaceae and Cyperaceae 

families (Si > 4%) followed by the species 

belonging to the Cucurbitacea, Urticaceae and 

Camelinaceae families which accumulate 

medium amounts of Si (2% < Si < 4%) (Currie 

& Perry, 2007). Most of the other plant species 
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accumulate low quantities of Si. Depending on 

the ability to absorb Si, plants are divided into 

three groups: active accumulators, passive 

accumulators, and excluders (Guntzer et al., 

2012, Hernandez-Apaolaza, 2014). 

McNaughton et al. (1985) suggested that silicon 

may be crucial in controlling pests. Until 

nowadays, Si has been shown to improve plant 

resistance and decrease plant damage caused by 

pathogens, insects, and non-insect pests. In the 

last decades, many researchers have proposed 

that silicon can, to some extent, mitigate the 

adverse effects of variable biotic and abiotic 

stresses. A significant number of studies were 

carried out with monocot plants, including rice 

(Yang et al., 2018, Roy et al., 2023, Tenguri et 

al., 2023), wheat (Singh et al., 2022, Ashfaq et 

al., 2023), barley (Sakr, 2021) and maize 

(Nascimento et al., 2018, Acevedo et al., 2021, 

Haq et al., 2022). Other articles investigate the 

Si effect in dicot plants belonging to various 

families, namely Cucurbitaceae (Savvas et al., 

2009), Solanaceae (Liu et al., 2009, Dos Santos 

et al., 2015, Somapala et al., 2016), Fabaceae 

(Shwethakumari & Prakashand, 2018) and 

many others. Almost all of the studies declared 

reduced pest and disease severity. Still, not all 

of them explain the mechanism by which silicon 

reduces the adverse effects of stress. 

 

Forms of silicon applied for biotic stress 

alleviation 

Silicon is absorbed from the soil by the 

roots, but it can also be applied to the shoots via 

foliar spray. The forms of available silicon used 

in the field or in glasshouses are various (Table 

1), including potassium silicate K2SiO3 

(Schuerger & Hammer, 2003, 2006, 2007, Liu 

et al., 2020), sodium silicate Na2SiO3 (Li et al., 

2009, Sun et al. 2022), calcium silicate CaSiO3 

(Resende et al., 2013, Alves et al., 2015), silicic 

acid H4SiO4 (Shwethakumari & Prakash, 2018), 

silica gel (SiO2) (De Oliveira et al., 2020), and 

Si-rich straw or hulls (Somapala et al., 2016, 

Bakhat et al., 2020) (Table 1).  

Table 1. Forms of silicon applied for biotic stress alleviation 

Form of Si Plant Reference 

Potassium silicate 

(K2SiO3) 

 

strawberry  Abd-El-Kareem et al. (2019), Kanto et al. 

(2007), Liu et al. (2020) 

cucumber  Schuerger & Hammer (2003) 

zinnia Ranger et al. (2009) 

lettuce Garibaldi et al. (2012) 

Sodium silicate 

(Na2SiO3) 

 

wheat Basagli et al. (2003) 

potato Li et al. (2009) 

strawberry Abd-El-Kareem et al. (2019) 

cucumber Sun et al. (2022) 

Calcium silicate 

(CaSiO3) 

sorghum  Resende et al. (2013) 

sweet pepper  Alves et al. (2015) 

rice  Linger et al. (2017) 

strawberry Abd-El-Kareem et al. (2019) 

Silicic acid (H4SiO4) soybean Shwethakumari & Prakash (2018) 

Silica gel (SiO2) vine Parrilli et al. (2019) 

wheat De Oliveira et al. (2020) 

Silicon-rich biochar 

(rice husk) 

tomato Somapala et al. (2016) 

wheat Otitodun et al. (2017) 

eggplant Bakhat et al. (2020) 
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The beneficial effects of Si are 

associated with the mechanical and 

physiological modification of plants, depending 

on whether it is applied to the roots or to the 

shoots of Podosphaera aphanis-infested 

strawberry plants (Liu et al., 2020). 

The protective role of Si application to 

the root system was attributed to Si 

accumulation in leaves, which hinders cuticle 

penetration by pathogens (Seal et al., 2018). 

According to several studies, the application of 

Si to the root system is promising in the 

protection against pathogens, but when supplied 

to the leaves, the protective effects are lower 

(Gomez et al., 2017). 

According to other researchers, the 

mode of action of the foliar-applied K2SiO3 on 

powdery mildew could be attributed to the 

formation of physical barriers and osmotic 

effects on leaf surfaces (Rodrigues et al., 2009). 

Another cheap and natural source of Si is the Si-

rich plant material such as the rice hull (husk) 

(Otitodun et al., 2017). It is organic, rich in 

silicon and contains about 8% of Si in its dry 

weight (Somapala et al., 2016).  

 

Stress responses in plants 

During the process of evolution, plants 

have developed various specific mechanisms to 

overcome the adverse effects of different 

stressful factors (Rejeb et al., 2014). Exposure 

to biotic and abiotic stress causes a disruption in 

plant metabolism, which leads to physiological 

damage (Bolton, 2009) and a decrease in plant 

health and productivity. Abiotic stress is one of 

the most essential characteristics of growth and 

has a significant impact on it. Therefore, it is 

responsible for severe losses in the field. The 

resulting reduction in growth can reach > 50% 

in most plant species. Biotic stress is an 

additional obstacle inducing intense pressure on 

plants (Mordecai, 2011). 

During plant-pathogen co-evolution, 

plants have developed a variety of defense 

mechanisms to prevent invasion and 

colonization by pathogens, belonging to diverse 

species including fungi, oomycetes, bacteria, 

viruses, and animals. A plant defense is 

successful when it ensures an early and fast 

restriction of the pathogen infestation and 

subsequent induction and mobilization of 

structural and biochemical protective 

mechanisms (Voigt, 2014).  

 

Silicon-induced physical amendment of plant 

cells tissues 

Plants can react to the attack directly and 

indirectly. Direct protections related to the 

morphological characteristics of the plant such 

as wax layer, trichomes (hairs), lignification of 

cell walls, affect the enemy feeding process 

(Dos Santos et al., 2015, Massey & Hartley, 

2009). These plant features represent a physical 

(mechanical) barrier and are the first line of 

defense. Plant cell walls are the front line of 

defense against pests and pathogens 

(Swaminathan et al., 2022). One of the 

hypotheses about the silicon mode of action is 

related to the mechanical changes in the plant 

cell and tissues that increase their strength and 

abrasiveness. The physical defenses against 

herbivores consist of structures such as raphides 

(needle like crystals), trichomes (hairy 

structures), thorns, rough and tough epidermal 

cells, spines, hard shells and pods (Vicari & 

Bazely, 1993). Many studies report a decrease 

in the pathogen population due to a reduced 

penetration of pathogens in strawberry (Kanto et 

al. 2007, Liu et al. (2020), cucumber (Menzies 

et al., 1991), potato (Liu et al., 2009) and many 

others (Table 2 and Table 3). 

The formation of a mechanical barrier in 

the cuticle and in the cell walls, caused by the 

polymerization of silicon was the first 

hypothesis about the Si mode of action in 

relation to reduction in plant disease severity 

(Samuels et al., 1994, Song et al., 2021). Silicon 

prevents the physical penetration of pathogens 

as it forms a thick layer under the leaf cuticle 

making the plant cell wall less susceptible to 

enzymatic degradation (Yoshida et al., 1962). 
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Table 2. Potential mechanisms of the silicon-induced protection against diseases (fungal diseases) 

Disease/pathogen Plant host Mode of action Reference 

Fungi 

Powdery mildew 

wheat  
Synthesis of phenolics and 

phytoalexins  

Rémus-Borel et al. 

(2005) 

strawberry Physical barrier Kanto et al. (2007) 

strawberry 
Physical barrier, biochemical 

amendment  
Liu et al. (2020) 

cucumber 
Physical barrier, papillae, phenolic 

synthesis 

Menzies et al. (1991), 

Samuels et al. (1994) 

cucumber Flavonoid phytoalexins  synthesis Fawe et al. (1998) 

Fusarium oxysporum f. 

sp. cucumerinum 
cucumber  

Antioxidant defense, activation, 

photosynthesis increase, Calvin 

cycle related to the gene expression 

Sun et al. (2022) 

Dry rot of potato tubers 

(Fusarium sulphureum 

Schltdl.) 

potato  

Thickening of the hyphal cell 

walls, cell distortion, 

and the deposition of electron-

dense material in hyphal cells 

Liu et al. (2009) 

Leaf blight (Phomopsis 

obscurans) 
strawberry 

Activation of peroxydase, 

polyphenol oxydase and chitinase 

Abd-El-Kareem et al. 

(2019) 

Early blight (Alternaria 

solani) 

Tomato Expression of defense-related genes 

and antioxidant enzymes 
Gulzar et al. (2021) 

Anthracnose  
Tomato Thicker cuticle and 

increased fruit firmness 
Somapala et al. (2016) 

Table 3. Potential mechanisms of the silicon-induced protection against diseases 

(bacteria and viruses) 

Disease/pathogen Plant host Mode of action Reference 

Bacteria 

Bacterial blight 

(Xanthomonas oryzae 

pv. oryza) 

rice 

Activation of β-1,3-glucanase, 

endochitinase and exochitinase 
Xue et al. (2010) 

Increased synthesis of total 

soluble phenolics and lignin, 

activities of PAL and PPO 

Song et al. (2016) 

Bacterial wilt (Ralstonia 

solanacearum) 
sweet pepper 

Increased production of chitinase, 

superoxide dismutase, ascorbate, 

peroxidase, β-1,3-glucanase, 

lignin and 

total protein 

Alves et al. (2015) 

Bacterial wilt (Ralstonia 

solanacearum) 
tomato 

Priming effect, triggering the 

expression of JA, ET, and/or 

ROS dependent genes 

Ghareeb et al. (2011) 

Viruses 

Tobacco ring spot virus 

(TRSV) 
tobacco 

Delay of TRSV systemic 

symptom formation 
Zellner et al. (2011) 
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Outside the cells, Si is accumulated in 

the subcuticular layer, the cell wall and 

intercellular spaces (Datnoff et al., 2007). The 

silicon-induced pathogen resistance is 

associated with a delayed incubation period, a 

reduced colony size, a decreased lesion size and 

number, and a suppressed inoculum production 

of fungi (Debona et al., 2017). 

According to many authors, the plant 

resistance to pests could be enhanced by 

antixenosis (reducing pest colonization) and 

antibiosis (reducing the reproductive period and 

the fecundity of pests such as aphids) after Si 

fertilizer application (Ranger et al., 2009, Dias 

et al., 2014, Boer et al., 2019). In the research of 

de Oliveira et al. (2023), the soil application of 

silicon led to a linear increase in the productivity 

of wheat and to a reduction in Sitobion avenae 

number. Both wheat genotypes (susceptible and 

constitutive resistant) demonstrated enhanced 

productivity and decreased aphid numbers, 

indicating that the Si treatment is compatible 

with the use of resistant plants. The authors 

couldn`t explain whether the observed 

resistance was caused by antibiosis, antixenosis, 

or both, but the Si applications demonstrated the 

potential of using S. avenae in wheat in 

integrated management.  

Silicon reduces the digestibility of 

tissues (Calandra et al., 2016, Massey et al., 

2006). Silicification occurs in macro-hairs and 

typical rectangular epidermal cells (Hodson et 

al., 1984), which is common for many grasses. 

Many authors suggested that the reason for the 

silicon-induced reduction in the pest numbers 

was the physical amendment of the plant tissues 

(Acevedo et al., 2021, Dos Santos et al., 2015, 

Haq et al., 2022, Massey & Hartley, 2009, Roy 

et al., 2023, Sidhu et al., 2013, Tenguri et al., 

2023, Vilela et al., 2014, White & White 2013, 

Xue et al., 2022, Yang et al. 2018). The silicon 

deposits were clearly located under the 

Scanning Electron Microscope at different 

doses of the silicon treatment, indicating that the 

increase in the silica dose enhanced its deposits, 

confirming its role in the defense mechanism 

(Roy et al., 2023).  

Regarding the anatomy of their mouth 

parts, insect and noninsect pests are divided into 

piercing-sucking (like leafhoppers, aphids, 

whiteflies, thrips and mites) and chewing (like 

moths, butterflies, and beetles) (Kumar & 

Rathor, 2020). Both groups could be effectively 

suppressed after feeding on Si-treated plants 

(Table 4 and Table 5). 

Table 4. Potential mechanisms of the silicon-induced protection against insect pests (chewing insects) 

Insect Pest Host plant Mode of action Reference 

Chewing pests 

Brown plant hopper 

(Nilaparvata lugens (Stål) 
rice Physical barrier 

Yang et al. (2018), Roy et al., (2023), 

Tenguri et al. (2023) 

Rice leaf folder 

Cnaphalocrocis medinalis 

(Guenee)  

rice  
HIPVs 

production  
Han et al. (2016) 

Stalk borer Diatraea 

saccharalis (F.) 
sugarcane  Physical barrier 

White & White (2013), (Sidhu et al., 

2013), Vilela et al. (2014) 

Fall armyworm Spodoptera 

frugiperda (Smith) 
maize Physical barrier 

Nascimento et al. (2018), Acevedo et al. 

(2021), Haq et al. (2022) 

African armyworm 

Spodoptera exempta 

(Walker)  

ryegrass Physical barrier Massey & Hartley, (2009) 

Tomato leaf miner Tuta 

absoluta (Meyrick) 
tomato Physical barrier Dos Santos et al. (2015) 
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According to Massey & Hartley, (2009) 

the high content of silicon in tissues leads to a 

reduced leaf digestibility and causes mandible 

wear, which is probably crucial for the 

herbivore performance.  The authors reported 

that the Si-rich diet was responsible for the 

extremely rapid insect mandibles wear, 

occurring within a single instar. The damage of 

the mandibles correlated with the decreased 

absorption of nitrogen and reduced growth 

rates. Herbivores, fed on Si-rich leaves, cannot 

completely recover after switching diets. This 

demonstrates the strong deterrent effect of the 

silica-based defenses. These defenses, in 

contrast to many chemical defenses, cannot be 

compensated or overcome with a dietary 

change: the adverse effects remain even when 

the insects start feeding on plants with low silica 

(Massey & Hartley, 2009).  

The silicon microstructures slow down 

insects’ penetration into plants, reducing the 

susceptibility of plants to pathogen damage 

(Bakhat et al., 2018). 

Table 5. Potential mechanisms of the silicon-induced protection against piercing-sucking insect and 

non-insect pests 

Insect Pest Host plant Mode of action Reference 

Piercing-sucking pests 

Spider mites  strawberry 
Physical barrier, metabolism 

amendment  
Liu et al. (2020) 

Whitefly (Bemisia tabaci) 

cucumber  Metabolism amendment Correa et al. (2005)   

eggplant 
Metabolism amendment, 

increased growth and Ca intake 
Bakhat et al. (2020) 

Aphids Myzus persicae 

(Sulzer),  

Sitobion avenae (F.) 

wheat  Antibiosis  

Dias et al. (2014), 

Jiang et al. (2023), 

Ranger et al. (2009) 

Bird cherry-oat aphid 

Rhopalosiphum padi 

(Linnaeus) 

wheat  Emission of HIPVs 

De Oliveira et al. 

(2020), 

Liu et al. (2017) 

Corn leaf aphid, 

Rhopalosiphum maidis 

(Fitch) 

maize  Antibiosis and non-preference Boer et al. (2019) 

 

Phytoliths 

The physical defense induced by the Si 

deposition in plant parts in the form of 

phytoliths (largely composed of SiO2) was one 

of the first theories proposed for studying the 

stress tolerance to pests (Song et al., 2021). The 

monosilicic acid polymerizes and forms the so 

called phytoliths, which are accumulated within 

the plant (Epsteian, 1994). Phytoliths play a 

structural protective role in plants (Xu et al., 

2023). In leaves phytoliths reduce the 

digestibility of plant tissues and weaken the 

mouth parts of the pests (Bakhat et al., 2018). 

The silicon deposition enhances the number of 

phytoliths on the surface of stems, which 

increases the cell wall thickness of the stem 

sclerenchyma (Miyake & Takahashi 1983). A 

large number of closely arranged phytoliths 

protects the vascular tissue of leaves and 

significantly enhances their resistance 

(Reynolds et al., 2009).  

 

Papillae 

According to Voigt (2014), the papillae 

are complex structures that are established 

between the plasma membrane and the inner site 

of the plant cell wall. The papillae formation is 

reported as a possible mechanism of the Si-
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induced defense in plants under biotic stress 

(Pozza et al., 2015, Verma et al., 2021). These 

structures could have variable biochemical 

compositions in the different plant species, but 

some compounds such as phenolics, reactive 

oxygen species, cell wall proteins, and cell wall 

polymers are commonly present.  

 

Callose 

Callose is an important linear form of 

polysaccharide which is synthesized in the plant 

cell walls. It is mainly build of β-1, 3-linked 

glucose residues with a small amount of β-1, 6-

linked branches (Li et al., 2024). Callose 

deposition is a process that is coordinated 

through the expression of the genes encoding 

callose synthase (OsGSL1) and hydrolase 

(Gns5) (Hao et al., 2008). Callose not only plays 

an important role in plant development but also 

participates in the plant defense against 

environmental stresses (Swaminathan et al., 

2022). Other researchers analyze the feeding 

behavior of phloem-sucking pests and report 

about the Si induced callose accumulation 

(Tenguri et al., 2023, Yang et al., 2018). The 

most intensely silicified tissues are usually the 

leaf epidermis, root endodermis, and abaxial 

epidermis of inflorescence bracts (Kumar et al., 

2017).  

 

Effect of Si on plant metabolism under biotic 

stress 

The second line of plant defense 

includes secondary metabolites (such as 

phenols, lignin) (Alves et al., 2015, Emam et al., 

2014, Xue et al., 2022), along with various 

enzymes (phytohormones) such as polyphenol 

oxidase (PPO), phenylalanine ammonia lyase 

(PAL) (Xue et al., 2022) and peroxidase (POD) 

(Alves et al., 2015), which are involved in their 

synthesis. One of the mechanisms by which Si 

is proposed to act and alleviate biotic stress is 

the production of reactive oxygen species 

(ROS) and the activation of the antioxidant 

metabolism (similar to the abiotic stress 

mitigation) (Van Bockhaven et al., 2013). The 

generation of ROS and incresed oxidative 

metabolism help to reduce plants oxidative 

damage (Domiciano et al, 2015, Yang et al., 

2017). These mechanisms have been related to 

stress due to a pathogen (bacterial and fungal) 

infection, as well as damage to the plant from 

chewing and piercing-sucking insects 

(Domiciano et al, 2015, Yang et al., 2017, 

Debona et al., 2014). The reactive oxygen 

species are involved in several signaling actions 

in different defense signaling pathways with 

plant hormones, such as JA and SA 

(Glazebrook, 2005, Ramputh et al., 2002, 

Torres, 2010, Gulzar et al., 2021). Last but not 

least, ROS may affect the plant defense genes, 

resulting in the accumulation of protective 

metabolic substances such as phytoalexins and 

allelochemicals in plants (Thoma et al., 2003). 

 

Phenolic and phytoalexin synthesis 

The role of phytoalexins in the plant 

resistance is well established (Dakora & 

Phillips, 1996, Daniel, 2017, Fawe et al., 1998). 

Phytoalexins are antimicrobial biomolecules 

with a low molecular weight that are 

synthesized in plants as a response to biotic and 

abiotic stresses (Jeandet, 2015). Silicon can 

induce the formation of such antimicrobial 

compounds (Rémus-Borel et al., 2005). 

Microscopic analyses of the leaf cells of the Si-

supplied cucumber plants demonstrated a rapid 

accumulation of phenolics in response to 

Podosphaera xanthii infection (Menzies et al., 

1991). The high concentrations of flavonoids 

and phenolic acids in the leaf extracts of the Si-

treated cucumber plants reduced powdery 

mildew symptoms (Emam et al., 2014). The 

hardness and brittleness of the wounds of 

Trichothecium roseum-infested muskmelon 

plants increased during the postharvest period 

due to lignin, suberin polyphenolic and silicon 

deposition in the wounded tissue, and the 

activation of phenylalanine ammonia-lyase 

(PAL), and the increased content of five 

phenolic acids (Xue et al., 2022).  
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Salicylic acid, jasmonic acid, and ethylene 

synthesis 

According to several researchers, Si 

plays a significant role in the multiple 

phytohormone signaling pathways to mitigate 

plant biotic stress (Frew et al., 2018, 

Manivannan & Ahn, 2017, Coscun et al., 2016). 

Silicon acts as an emitter of systemic stress 

signals, leading to the efficient synthesis of 

protective compounds. The phytohormones 

salicylic acid (SA), jasmonic acid (JA) and 

ethylene play a major role in organizing the 

protective reactions of plants. Jasmonic acid is 

thought to regulate protection against both 

chewing insects and piercing-sucking insects, 

while SA is associated with protection against 

piercing-sucking insects, feeding on phloem. 

There is evidence of a strong interaction 

between Si and JA against insects, which is 

considered a possible mechanism by which Si 

increases plant resistance to insect pests.  

According to Grant et al. (2013), to 

protect themselves from microbial pathogen 

infections, plants have created a multilayer 

immune system, relaying on constitutive and 

inducible defense mechanisms, where plant 

hormones play key roles. 

The signaling pathways that allow rice 

plants to establish resistance to the rice leaf 

folder (Cnaphalocrocis medinalis) are 

dependent on JA (Liu et al. 2017). Silicon and 

JA are strongly associated with the different 

aspects of the rice defense system, as increased 

levels of transcripts encoding protective genes, 

the activity of defense-related enzymes (PPO, 

POD and trypsin protease inhibitor), in addition 

to the change in the so called herbivore induced 

plant induced volatiles HIPV (Ye et al., 2013).  

Silicon increases the tolerance against 

the necrotrophic fungal pathogen (Cochliobolus 

miyabeanus), but according to Van Bockhaven 

et al. (2015) this effect was not dependent on JA 

and SA pathways. The authors proposed that the 

Si mode of action is based on the deactivation of 

the pathogen ethylene production. They 

suggested that photorespiration and the 

development of ROS played a vital role in the 

Si-induced defense against pathogens. 

 

Photosynthesis and enzymatic defense system 

activation 

Photosynthesis is among the most 

important phenomena, which is responsible for 

biomass production and overall growth and 

development in plant (Rastogi et al., 2021). 

Photosynthesis-related factors play a key role in 

plant metabolism and are involved in the 

defense against pathogens (Letousey et al., 

2010). There are several studies that 

investigated the effect of Si in case of pest or 

disease attacks and proposed that the positive 

effect of Si was due to the photosynthesis 

enhancement (Bueno et al., 2017, Sun et al., 

2022) and activation of the stress-related 

enzymes from the antioxidant defense system 

(Gulzar et al., 2021, Manivannan & Ahn, 2017, 

Rahman et al. 2015).  Silicon pretreatment 

increased the net photosynthetic rate, and the 

leaf gas exchange parameters stomatal 

conductance and transpiration rate in Fusarium 

oxisporum-infected cucumber (Sun et al., 2022). 

According to Meunier et al. (2017) one of the 

reasons for the increased photosynthetic ability 

of plants is that phytoliths are responsible for the 

leaf erectness and hence provide large surface 

area to absorb more sunlight. Si 

supplementation enhanced the early blight 

resistance in tomato by modulating the 

expression of defense-related genes and 

antioxidant enzymes (Gulzar et al., 2021). Such 

activation of the antioxidant defense system was 

observed also in ryegrass against infection by 

Magnaporthe oryzae in rice (Rahman et al. 

2015). 

 

Tritrophic level of silicon-mediated plant 

defense via HIPVs emission 

It is observed that Si is able to influence 

both bitrophic (plant-herbivore), as well as 

tritrophic (plant-herbivore–natural enemy) 

interactions, which, according to Kvedaras et al. 
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(2010) and Reynolds et al. (2016), may provide 

another mechanism for pest control. The 

secondary metabolites are essential in the 

interactions of plants with insects and other 

natural enemies. The plant volatile emissions 

are constitutive or inducible in response to stress 

and are involved in the protective reactions 

elicited by grazing animals (Dicke & Baldwin, 

2010). In tritrophic systems, the chemical 

substances are emitted from plants in response 

to insect induced damage in the form of HIPVs 

(herbivore induced plant volatiles). These 

compounds, regardless of their chemical nature, 

may act either as direct repellents or attractants 

for the insects and could be used as host signals 

from entomophagous predators and insect pest 

parasites (Van Oudenhove, 2017).  

Silicon can provoke different plant 

species to emit, enhance and/ or alter HIPVs 

(Kvedaras et al. 2010, Alhousari & Greger, 

2018). Wild-type rice plants treated with silicon, 

established a strong indirect protection as a 

response of the rice leaf folder (Cnaphalocrocis 

medinalis) feeding, based on HIPVs production 

(Han et al., 2016, Liu et al., 2017). The volatiles 

emitted included hexanal 2-ethyl, α-

bergamoten, β-sesquiophelandrene, and cedrol, 

produced in significantly smaller amounts in 

infected Si-treated plants. Their emission 

significantly enhanced the attraction of adult 

female parasitoids Trathala flavo-orbitalis and 

Microplitis mediator to Si-treated plants 

attacked by C. medinalis (Liu et al. 2017). 

According to De Oliveira et al. (2020), the 

silicon-induced changes in the wheat volatile 

blend mediate the non-preference behavior of 

the bird cherry-oat aphid (Rhopalosiphum padi) 

and the attraction of the aphid parasitoid 

Lysiphlebus testaceipes. It was also reported 

that the Si treatment is able to alter the grapevine 

volatile profile of the grapevine moth-infested 

plants (Phalaenoides glycinae Lewin) 

(Connick, 2011). The authors observed an 

enhanced production of n-heptadecane, but a 

decreased synthesis of Cis-thio rose oxide in the 

Si-supplied plants compared to the controls. 

CONCLUSION 

 

Silicon plays an unexpectedly vital role 

in enhancing the direct and indirect protection 

of plants against many pests and pathogenes via 

two closely related mechanisms that, in many 

cases, act in combination: strengthened physical 

or mechanical barriers and biochemical 

mechanisms trigger protective responses in 

plants. We could speculate that the soil 

application of silicon may offer a combined 

physical and chemical protection from diseases 

and pests, while the foliar application 

contributes only to the physical defense against 

enemy penetration. In some cases, the physical 

amendment ensures more sustainable protection 

as it is irreversible, and the permanent damages 

to the pest's digestive system cannot be 

alleviated via dietary change. Probably, the 

physical mode of protection is more often 

observed against chewing pests or fungi. On the 

other hand, the phloem-feeding piercing-

sucking pests and bacteria are restricted mostly 

via the amendment of the plant metabolism. It is 

hard to judge which protection approach is more 

reliable and effective. Still, with the 

development of science and technologies, we 

could declare that all these mechanisms act 

synergistically rather than separately, relying on 

a combination of physical and biochemical 

amendments to reduce pest and pathogen 

damage or to attract their natural enemies 

(Figure 1). 
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Figure 1. Mechanisms of the silicon-induced defense in plants against pathogenes and 

herbivores pests 
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